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We consider the derivation of the equation of the turbulent boundary
layer of an imperfect gas (e.g., dissociated air), We show that the re-
lations which hold for an ideal gas and which are consequences of the
equations of motion, continuity and energy only can be generalized to
include the case of an imperfect gas by formally replacing temperature
with enthalpy. We give examples of such relations.

1. Boundary layer equations. We consider the system of equations
of an averaged plane turbulent flow of a real gas. We first look more
closely at the energy equation. This equation is obtained by taking the
time average of the energy equation of the actual motion which it is con-
venient to write in this case in the following form* (the gas is supposed
transparent):

(1.1)
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Here x and y are the Cartesian coordinates of a point, t is time, p
is density, p is pressure, I is the stagnation enthalpy, i is enthalpy,
e is internal energy and J is the mechanical equivalent of heat.

(Note. In order to simplify computations we omitted in Equatiom (1.1)
terms due to molecular heat conduction and viscosity. This is justified

* Strictly speaking one should consider the equation of energy for a
three-dimensional flow for the simple reason that the actual motion
of the gas is three-dimensional. However, in case of a plane averaged
flow this does not affect the final result.
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by the fact that, after averaging, these terms turn out to be small com-
pared with the corresponding turbulent characteristics. Equation (1.1)
holds for an imperfect gas, 1.e. when\the specific heats ¢ and c, de-
pend on temperature and pressure and the equation of state is arbitrary.
In particular, (1.1) is valid for equilibrium dissociation of air or
other mixtures of gases.)

To obtain the energy equation of an averaged turbulent motion one
must write the functions in (1.1) as sums of an averaged and a fluctuat-

ing component

u=u-+u’, v=v-+47, P=14d
etc., and average with respect to time. After carrying out all the
necessary transformations using the averaged continuity equation [ cf.

Equation (1.11)] and disregarding fluctuating terms of order higher than
two we get
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g, =pui, - q,=pv7 (turbulent heat flux)
Here v°, 1°, i° represent the averaged components of velocity and

enthalpy in the flow of a compressible gas and I° the average stagnation
enthalpy.

We note that with the given definition of the mean quantities u°, v°
i°, density fluctuations do not enter explicitly in Equation (1.2). The
velocities v°, +° are ratios of the appropriate averaged divergence to
the mean density, and the enthalpy i° is the ratio of the specific
thermal capacity to the mean density.

An important instance of the flow of an imperfect gas is the flow in
a boundary layer. To obtain the energy equation in the boundary layer we
must neglect in (1.2) quantities of order +° in comparison with quanti-
ties of order v°, and derivatives with respect to x in comparison with
derivatives with respect to y (the z-axis is supposed directed along the
body profile). Also in the boundary layer equation we must take into
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account terms due to molecular viscosity and heat conduction, since these
terms are significant in the immediate vicinity of the rigid surface
where the turbulent fluctuations die out. We have
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Here T is the temperature, g is the viscosity coefficient, and 5 is
the coefficient of heat conduction. We represent the turbulent stress
7., and the turbulent heat flux q  (by analogy with the corresponding
moiecular characteristics) in the” following form

where ¢ and n, are the coefficients of turbulent viscosity and turbulent
heat conduction. The relations just written out can be regarded as de-
finitions of ¢ and n,. In the expression for g, we use the mean tempera-
ture T° because in the case of an ideal gas (¢, = const) this quantity
appears on the left-hand side of Equation (1.3) in place of the enthalpy
° (i.e. for ¢_ = const, i® = ¢, T° ) and it can therefore be viewed as
an extension o% the notion of average temperature to the case of a com-
pressible gas. A further simplification consists in the replacement of
the quantities

wu du [ dy, 70T [3y by pu’du®/ady, 7n0T° ] dy

This is justified by the fact that in the laminar sublayer close to the
wall where these terms are significant there are no turbulent fluctua-
tions. Therefore

pu du [ dy = pu®ou® /9y = pu du [ dy, 20T [0y = 10T° [0y ==noT /3y

However, it should be noted that in the boundary layer some distance
away from the wall there always exists a "transition® domain in which the
coefficients of molecular and turbulent viscosity and of heat conduction
are of the same order. In this domain the above simplification is not
valid. Therefore the equations given below, namely, the energy equation
and the equation of motion corresponding to the generally accepted form
in which this equation is stated (utilizing this simplification) are
based on an assumed division of the boundary layer into two domains with
different flow regimes, a turbulent outer layer and a laminar sublayer.
We have
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Assuming the average enthalpy i® to be a function of the mean temper-
ature and pressure, i° = i°(T°, p), we have

or _ or oT° | a0p
oy T By ' apdy

If we define the mean specific heat ¢ ° by means of the relation
9i°(T°, p)/dT® and observe that in the goundary layer dp/dy = 0, we ob-
tain the following formula which is valid in the general case only for
an ideal gas:

gic _  LoT°
Gy Py

Using (1.4) and introducing the Prandtl number P = uce/n and the
Prandt]l number for turbulent mixing P, = €c, °/n ¢ We obtain the energy
equation for the turbulent boundary layer

(1.4)
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We note that (1.5) differs from the energy equation for an ideal gas
only in that in place of the mean temperature it contains the mean
enthalpy. The energy equation for a laminar boundary layer is a special
case of (1.5). Next we consider the equation of state. In the case of
pressures well below critical it can be written (for actual quantities)
in the form

pm = KpT (1.6)

where » is the molecular weight of the gas, and K is the universal gas
constant.

If we average both parts of (1.6) with respect to time we get

pm® = KpT® (m°=P:”"=‘nZ[1+!’:'i-]) 1.7
P p > o (1.7)
Thus, with an appropriate definition of mean molecular weight we find
that the equation of state commecting the mean pressure, density and
temperature - all of which appear in (1.5) - retains its usual form.
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The molecular weight of a gaseous mixture (e.g. dissociated air) is
connected with the molecular weight of the individual components m, by
means of the well-known formula

M. \-1
m=(2%) (1.8)
where ¥, is the mass fraction of the kth component of the mixture. Taking
the time average of both sides of (1.8) we get

_ M\ 1

m= (Z;H—k) (1.9)

If we compare the expression (1.7) for a° with (1.9) we see that the

dependence of the mean molecular weight # on the quantities m, in case
of a turbulent flow differs from the corresponding dependence under
static conditions. Its explicit form can be established only by means of
relations from the theory of turbulence which connect the mean quantities
with mean values of the fluctuations, i.e. it depends on the character-
istics of the flow. The same can be said about the comnection between
mean enthalpy i° and temperature T°. When prescribing the values of these
quantities in the turbulent boundary layer of dissociated air it is not
possible, in general, to make use of tables based on the assumption of
equilibrium of dissociation which fail to take into account the special
features of the motion of gas.

The equations of motion and continuity do not change form when we go
from an ideal gas to an imperfect gas. These equations are:

et o)~ B glera] oo
2rlem+ien=0 (1.11)

From what we have said it follows that the system of equations of the
turbulent boundary layer of an imperfect gas is more complicated than
the corresponding system for ¢, = const and ® = const and contains a
greater number of variables.

However, relations which hold for an ideal gas and are consequences
of the equations of energy and continuity alone can be easily extended
to the case of an imperfect gas by formally replacing temperature with
enthalpy. Examples of such relations are given below.

2. Integrals of the energy equation. Commectiom betwveen
heat conduction and friction. In the following we drop the symbol
for taking averages. This is done to simplify notation. The index w de-
notes values of quantities on the wall and = values of quantities outside
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the boundary layer.

For stationary mean motion P = P, = 1, in the absence of heat exchange
between the body and the gas

&) = @) =G =0

and for arbitrary distribution of pressure over the profile of the body
we obtain, on the basis of (1.5),

I =const =1, (2.9)

In spite of the fact that i = const, the temperature of the surface
of the body does not, in general, remain fixed but varies in accordance
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with the form of the function i(T, p). In the case of dissociated air
which satisfies approximately the conditions of the problem under con-
sideration, the temperature of the wall T, turns out to be low compared
with the values obtained under the assumption that air is at all temper-
atures an ideal gas whose specific heat p is 0.24 Kcal/Kg. degr. This
is illustrated in the figure which shows the dependence of enthalpy of
air i on its temperature T° K and pressure (p in atm.) under the
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assumption of equilibrium of dissociation [1]. The figure also shows
the relation i = cp'l' for an ideal gas with cp = 0.24 Kcal/Kg. degr.

We now consider the formula for the hydrodynamical model of heat con-
duction (the Reynolds model). In the case of stationary mean motion for
p=const, P=P, =1, T = const, Equations (1.5), (1.10) and the bound-

ary conditions

u=0 for y =0, u-—U tor y— oo

we obtain a linear relation connecting velocity and the stagnation

enthalpy:
1—1,

u
=1, 7T

(2.2)

(2.2) implies the well-known connection between the Nusselt number
N_, the Reynolds number R- and the coefficient of friction ¢ f

w = ;wacf
Here (L is a characteristic length)

_ QL _ di _ PUL 27y,
Nw_—nw.(fw—loo) ’ Qw—_"’]‘w(a—!;)w, Rw— by Cp = ﬁi

If we insert in the expression for the Nusselt number the heat flux
q = ~ 1 (3T /3y) by means of the relation (1.4) and the values of the
coefficient of heat conduction 7, and the specific heat € poo in the un-
perturbed stream we obtain

_ N Pe ( — _ Tuipl )
No=Npow V= wu, =Ty @9
We put the Reynolds number in the following form
_ p P UL
Ro-Ry=  (R=T=—)

In the case at hand we assume P = Pt = 1 so that
= —:RC’ (2.4)

We see that if the Nusselt number is defined by (2.3), then the form-
ula for the Reynolds model retains its usual form in case of an imperfect
gas. Certain approximate relations based only on the equations of motion,
continuity and energy admit of similar extension.

The approximate connection between the stagnation temperature and the
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velocity in a stationary turbulent boundary layer near a plate for P #

P, # 1, p= const, T, = const can be represented in the turbulent outer

layer of the boundary layer by

[ L= - T (1= Py (1 =) — A (1 — ]

w

and in the laminar sublayer by
9, PU — p2 - —
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In case of a turbulent boundary layer with u = y”", n= 78, com-
putations yield A = 0.59 +0.60. In the given formulas the terms pro-
portional to @, @2, &’ represent the first terms in the expansion of
I(z) in the vicinity of the wall. The coefficient of a* is chosen so that
the complete profile of the stagnation enthalpy for g, = 0 satisfies the
energy integral o

2 a(1—LYay=o0
S Poo ¢ (1 Ioo) y

When these relations are applied at the boundary of the laminar sub-

layer we obtain

P, P\ G Cposl
N =4 Rey [ i (1-24)] (V= sr2=r) @9

Here I | is the enthalpy of the gas at the wall in the absence of
heat exchange between the wall and the gas;uj, = u, /Uis the ratio of the
velocity on the boundary of the laminar sublayer to the velocity of the
unperturbed stream. According to the semi-empirical theory of turbulence
this quantity is connected with the coefficient of friction

_ « S P
A = —— .
" VPl/ 2 by

Here ¢ is an empirical constant of the laminar sublayer (experiments with
incompressible fluids give a = 11.5).

The quantity I_, for P £ 1 and P, # 1 does not coincide with the stag-
nation enthalpy of the unperturbed stream. The difference is determined
by the value of the *coefficient of restoration of enthalpy* 2.6)

1,,—i )
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We note that for P= P, # 1 the velocity on the boundary of the
laminar sublayer does not " appear in (2.5) and (2.6). In this case

N= 1R, 9 =1—(1— P)(1—A4) 2.7)

Formula (2.7) differs from (2.4) only in that the quantity I, which
appears in the Nusselt number is not equal to I

The relations (2.5) and (2.6) were obtained under the assumption that
P and P, are constant. In the case of a dissociated gas (e.g. air) the
Prandtl number P depends on the extent of dissociation of the gas, i.e.
on its temperature. However, within the limits of the laminar sublayer
where the value of the parameter P is significant, the variation of
temperature is small. As for the Prandtl number of turbulent mixing P,
it, as well as other characteristics of turbulence, does not, apparently,
depend on the chemical nature of the gas or liquid and can therefore be
taken equal to that number for an ideal gas. It should be noted that at
the moment our knowledge concerning the Prandtl number in the case of
turbulent mixing is far from complete. Prandtl [2 ] gives the value for
the parameter P, = 0.7, i.e. for air P = P,.

When we take into account the difference of the values of the para-
meter P at the wall (in the laminar sublayer) and in the unperturbed
flow, Formula (2.5) can be written as follows:

P — P, P -1
N..——' %RC,[?-‘;-*— Un (F:—ﬁ!;>] (2.8)

From the specified data it is clear that when studying problems of
heat exchange between the wall and the stream of an imperfect gas, it is
more convenient to use the generalized Nusselt number [ cf. Equation (2.5)]
rather than the usual
9y L

for then certain relations which follow from the equations of motion,
continuity and energy do not change form. It is expedient to replace the
temperature recovery coefficient by the enthalpy recovery coefficient.
These points should be kept in mind when processing experimental data.
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