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We consider the derivation of the equation of the turbulent boundary 
layer of an imperfect gas (e.g., dissociated air). We show that the re- 
lations which hold for an ideal gas and which are consequences of the 
equations of motion, continuity and energy only can be generalized to 
include the case of an imperfect gas by formally replacing temperature 
with enthalpy. We give examples of such relations. 

1. Boundary layer equations. We consider the system of equations 
of an averaged plane turbulent flow of a real gas. We first look more 

closely at the energy equation. ‘Ibis equation is obtained by taking the 

time average of the energy equation of the actual motion which it is con- 

venient to write in this case in the following form* (the gas is supposed 

transparent 1: 
(l-1) 

Here x and y are the Cartesian coordinates of a point, t is time, p 

is density, p is pressure, I is the stagnation enthalpy, i is enthalpy, 

e is internal energy and J is the mechanical equivalent of heat. 

(Note. In order to simplify computations we omitted in Equation (1.11 
terms due to molecular heat conduction and viscosity. This is justified 

l Strictly speaking one should consider the equation of energy for a 
three-dimensional flow for the simple reason that the actual motion 
of the gas is three-dimensional. However, in case of a plane averaged 
flow this does not affect the final result. 

120 



The turbulent boundary layer of an imperfect gas 121 

by the fact that, after averaging. these terms turn out to be small corn- 

pared with the corresponding turbulent characteristics. Equation (1.1) 
holds for an imperfect gas. i.e. when\ the specific heats cP aud cy de- 
pend on temperature and pressure and the equation of state is arbitrary. 
In particular, (1.1) is valid for equilibrium dissociation of air or 
other mixtures of gases.) 

To obtain the energy equation of an averaged turbulent motion one 
must write the functions in (1.1) as swss of an averaged and a fluctuat- 
ing conponent 

u = u + u’, v = v+ v’. i=i+i’ 

etc., and average with respect to time. After carrying out all the 
necessary transformations using the averaged continuity equation [cf. 
Equation (1. 11)l and disregarding fluctuating terms of order higher than 
two we get 

-1.1 --Pi Qr=pul, - Q,=pv1 (turbulent heat flux) 

Here cf, u”, 
enthalpy in the 
enthalpy. 

i” represent the averaged components of velocity and 
flow of a compressible gas and I0 the average stagnation 

We note that with the given definition of the mean quantities If, w” 
P, density fluctuations do not enter explicitly in Equation (1.2). The 
velocities Up, II’ are ratios of the appropriate averaged diverge&e to 
the mean density,. aud the enthalpy P is the ratio of the specific 
thermal capacity to the mean density. 

An irqortant instance of the flow of an imperfect gas is the flow in 
a boundary layer. To obtain the energy equation in the boundary layer we 
must neglect in (1.2) quantities of order v” in comparison with quanti- 
ties of order If, and derivatives with respect to x in comparison with 
derivatives with respect to y (the x-axis is supposed directed along the 
body profile). Also in the boundary layer equation w must talce into 
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account terms due to molecular viscosity and heat conduction, since these 
terms are significant in the inmediate vicinity of the rigid surface 
where the turbulent fluctuations die out. We have 

Here T is the temperature, c is the viscosity coefficient, and q is 
the coefficient of heat conduction. We represent the turbulent stress 
r' 
'I 

and the turbulent heat flux Qr (by analogy with the corresponding 
mo ecular characteristics) in the following form 

where c aud qt are the coefficients of turbulent viscosity aud turbulent 
heat conduction. 'lhe relations just written out can be regarded as de- 
finitions of E and qt. In the expression for gr we use the mean teqxra- 
ture To because in the case of an i&al gas (c = must) this quantity 
appears on the left-haud side of Fqation (l.3? in place of the enthalpy 
i" (i.e. for c 
au extension o f 

= con&., i” = c To) and it can therefore be viewed as 
the notion of aterage temperature to the case of a com- 

pressible gas. A further siqlification consists in the replacement of 
th e quantities 

'Ihis is justified by the fact that in the laminar sublayer close to the 
wall where these terms are significant there are no turbulent fluctua- 
tions. Therefore 

Houever, it should be noted that in the boundary layer some distance 
away fme the wall there always exists a.trausitiou" domain in which the 
coefficients of molecular aud turbulent viscosity aud of heat canduetiou 
are of the sme order. Iu this domain the above simplification is not 
valid. Therefore the equations given below, nmnely, the energy equation 
audtheequatiouofmotim correqxmdingtothe gouerally accepted form 
in which this equation is stated (utilizing this simplification) are 
based on au ewuaed division of the bouudary layer into two domains with 
different flow regimes, a turbulent outer layer and a lkuar sublayer. 
Ue have 
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Assuming the average enthalpy i” to be a function of the mean temper- 
ature and pressure, i” = i” (TO, p>, we have 

If we define the mean @e.cific heat c O by means of the relation 
die (To, ~>/a To sn$ observe that in the kndary layer $/+ = 0, wz ob- 
tain the following fornwla which is valid in the general case only for 
an ideal gas: 

aio 0 aT" 

-==* ay ay (1.4) 

Using (1.41 and introducing the Prandtl number P = /~cg/v and the 
Prandtl number for turbulent mixing Pt = c cpo/7 t we obtain the energy 
equation for the turbulent boundary layer 

We note that (1.5) differs from the energy equation for an i&al gas 
only in that in place of the mesn temperature it contains the mean 
enthalpy. ‘lhe energy equation for a laminar boundary layer is a special 
case of (1.51. Next we consider the equation of state. In the case of 
pressures well below critical it can be written (for actual quantities) 
in the form 

pm = KpT $6) 

where l is the molecular weight of the gas, and K is the universal gas 
constant. 

If we average both parts of (1.61 with respect to time we get 

pm” = KiT” m” = - %G[1+zE]) (1.7) 

‘lhus, with an appropriate definition of mean molecular weight we find 
that the equation of state connecting the mean pressure, density and 
temperature - all of which appear in (1.5) - retains its usual form. 
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The molecular weight of a gaseous mixture (e.g. dissociated air) is 
connected with the molecular weight of the individual coaponents nk by 

mans of the well-hnown formula 

where MA is the mass fraction of the kth component of the mixture. Taking 
the time average of both sides of (1.8) we get 

rn=~~ 
( 1 

-I 
(1.9) 

k 

If we compare the expression (1.7) for rP with (1.9) we see that the 
dependence of the mean molecular weight P on the quantities IQ in case 
of a turbulent flow differs from the corresponding dependence under 
static conditions. Its explicit form can be established only by means of 
relations from the theory of turbulence which connect the mean quantities 
with mean values of the fluctuations, i.e. it depends on the character- 
istics of the flow. The smne can be said about the connection between 
mean enthalpy P and teaqerature To. When prescribing the values of these 
quantities in the turbulent boundary layer of dissociated air it is not 
possible, in general, to mahe use of tables based on the assuaption of 
equilibrium of dissociation which fail to take into account the special 
features of the motion of gas, 

The equations of motion and continuity do not change form when we go 
from an ideal gas to an imperfect gas. These equations are: 

(1.10) 

(1.11) 

From what we have said it follows that the system of equations of the 
turbulent boundary layer of an imperfect gas is more complicated thsn 
the corresponding system for c,, = carat and I = const and contains a 
greater n&r of variables. 

However, relations which hold for an ideal gas and are consequences 
of the equations of energy and continuity alone can be easily extended 
to the case of an imperfect gas by formally replacing temperature with 
enthalpy. Exaaples of such relations 8re given below. 

2. Integrals of the energy equation. Gnectioa between 
heat conduction arei friction. In the following we drop the symbol 
for taking average8. This is done to simplify notation. The index I de- 
notes values of quantities on the uall and m values of quantities outside 
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the boundary layer. 

For stationary meau mtion P = P, = 1, in the absence of 
between the body and the gas 

(gx = ($)* = ($ = 0 

aud for arbitrary distribution of pressure over the profile 
we obtain, on the basis of (1.51, - 

I = const = 

In spite of the fact that i, = const, 
of the body does not, in general, remain 

&TO 

the temperature of 
fixed but varies in accordance 

125 

heat exchange 

of the body 

(2.1) 

the surface 

with the form of the function i (T, pl. In the case of dissociated air 
which satisfies approximately the conditions of the problem under con- 
sideration, the temperature of the wall TV turns out to be low compared 
with the values obtained under the assuapticm that air is at all temper- 
atures an ideal gas whose specific heat cp is 0.24 Kcal/Kg. degr. lhis 
is illustrated in the figure which shows the dependence of enthalpy of 
air i on its temperature To K and pressure (p in atm. 1 under the 
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assunption of equilibriua of dissociation [ 1 I. ‘Ihe figure also shows 
the relation i = c,T for an ideal gas with c,, = 0.24 Kcal/Kg. degr. 

We now consider the formula for the hydrodynaxical model of heat con- 
duction (the Reynolds model). In the case of stationary mean motion for 
p p: con&, P = P, = 1, T, = const, Equations (1.51, (1.10) and the bomd- 
ary conditions 

u = 0 for y = 0, u--+U for ~4-00 

we obtain a linear relation connecting velocity and the stagnation 
enthalpy : 

(2.2) implies 
Nv, the Raynolds 

I - I, ----=; 
1o3--I, (2.2) 

the Al-known connection between the Nusselt nuuber 
nwaber A, and the coefficient of friction c f : 

N, = $R&, 

Here U is a characteristic length) 

N QV? 
lo= Tlo(~ur--I,) ’ 

Qw =-&jw, R, z@$, 

?Y 

If we insert in the expression for the Fksselt nwuber the heat flux 
=-‘I @T/dy) by means of the relation (1.4) and the values of the 

c&fficiZnt of he1t conduction 7j, 
perturbed stream we obtain 

and the specific heat cpoD in the un- 

We put the Reynolds number in the following form 

R lo- -R? 

In the case at hand ‘IC ass- P..P,= 1 so that 

N =$Rq 

We see that if the Nusselt nuber is defined by (2.3), 

N= 
qw cpce L 

?co (1, - Zao) > 

PI_JJL 
R=? 

00 

(2.3) 

(2.4) 

thenthsforr 
ula for the Rtynolds model retains its usual form in c8ae of sn *feet 
gas. Grtain app roxkte relations based only on the sqnstiens of amtim 
continuity and energy a&it of similar extension. 

lhe approxiawe connec tion between the stagnation teqerature and ths 
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velocity in a stationary turbulent boundary layer near a plate for /‘f 
Pt f 1, p = const, I’, = const can be represented in the turbulent outer 

layer of the boundary layer by 

I-II,= q&-U)- & (I-P,) [(l-4)- A (I-&)I 

and in the lsminar sublayer by 

I = I, 
q,pu - ua 

-7w u+ D(M’)(iia-A<4) 

In case of a turbulent boundary layer with ‘i ig y’ln, n = 7-~8, com- 
putations yield A = 0.59+0.60. In the given formulas the terms pro- 
portional to U, U*, ii3 represent the first terms in the expansion of 
i(S) in the vicinity of 
the complete profile of 
energy integral 

When these relations 
layer we obtain 

the wall. The coefficient of G’ is chosen so that 
the stagnation enthalpy for 9, = 0 satisfies the 

are applied at the boundary of the laminar sub- 

N- +Rq +-+ii,, (I- %)I1 

Here Ill,, is the enthalpy of the gas at the wall in the absence of 
heat exchange between the wall and the gas; u,., = u,, /Uis the ratio of the 
velocity on the boundary of the larainar sublayer to the velocity of the 
unperturbed stream. According to the semi-empirical theory of turbulence 
this quantity is connected with the coefficient of friction 

r- 

Here a is an empirical constant of the laminar sublayer (experiments with 
incaapressible fluids give a = 11.5). 

The quantity Ia, for P # 1 and P, f 1 does not coincide with the stag- 
nation enthalpy of the unperturbed stream. ‘Ihe difference is detennined 
by the value of the .coefficient of restoration of enthalpyw 

I,- io, 
t2.6) 

9Ez, 
03 - i, = 1- {(1- P,) [(l- &f) - A (1 -;,“)I + (1- P)(;,f- A;;,‘)) 
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We note that for P = P, f 1 the velocity on the boundary of the 
laminar sublayer does not appear in (2.5) and (2.6). In this case 

N = +Rc,, 8= I-(I-P)(l-A) (2.7) 

Formula (2.7) differs from (2.4) only in that the quantity I., which 
appears in the Nusselt nunber is not equal to I_. 

l’he relations (2.5) and (2.6) were obtained under the assuqtion that 
P and P, are constant. In the case of a dissociated gas (e.g. air) the 
Prandtl number P depends on the extent of dissociation of the gas, i.e. 
on its temperature. However, within the limits of the laminar sublayer 
where the value of the parameter P is significant, the variation of 
temperature is small. As for the Randtl number of turbulent mixing P, 
it, as well as other characteristics of turbulence, does not, apparently, 
depend on the chemical nature of the gas or liquid and cau therefore be 
taken equal to that nunber for an ideal gas. It should be noted that at 
the moment our knowledge concerning the Prandtl number in the case of 
turbulent mixing is far from ccaplete. Prandtl [ 2 1 gives the value for 
the parameter P, = 0.7, i.e. for air P P P,. 

When we take into account the difference of the values of the para- 
mater P at the wall (in the laminar sublayer) and in the unperturbed 
flow, Formula (2.5) can be written as follows: 

+_& 
)I 

-1 

00 co 
(2.8) 

From the specified data it is clear that when studying problems of 
heat exchange between the wall aud the stream of an imperfect gas, it is 
more convenient to use the generalized Nusselt n&r [cf. Equation (2.5)1 
rather than the usual 

NC %uL 
?oJ Vu, - T-1 

for then certain relations which follow from the equations of motion, 
continuity and energy do not change form. It is expedient to replace the 
temperature recovery coefficient by the enthalpy recovery coefficient. 
lhese points should be kept in mind when processing experimental data. 
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